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Abstract 

 

Bias correction and downscaling of NWP precipitation forecast requires an accurate and 

quality controlled analysis as the proxy for the truth, on a 5x5km (NDFD) grid over 

CONUS for each 6-hour period. The two widely used precipitation datasets are the CPC 

Unified Global Daily Gauge Analysis and Stage IV analysis based on Quantitative 

Precipitation Estimate with multi sensor observations. The Former is based on gauge 

records with a uniform quality control across the entire domain and thus bears more 

confidence, but it provides only 24 hour accumulation at one eighth degree resolution. 

The Stage IV dataset, on the other hand, has the required spatial and temporal resolution, 

but is subject to different methods of quality control and adjustments by different River 

Forecasting Centers. 

 

This paper describes a methodology used to generate a new dataset by combining the two 

available analyses to take advantage of the higher climatological reliability of the CPC 

dataset and the higher temporal and spatial resolution of the Stage IV dataset. The Stage 

IV dataset is first aggregated to CPC resolution and a statistical relationship is established 

between the two datasets.  Simple linear regression is used to adjust the aggregated Stage 

IV data to make its climatology look like that of the CPC dataset. Finally, the adjusted 

Stage IV data is downscaled back to its original resolution to recover its original 

variability in time and space.  

 



The new data set, named Climatology Calibrated Precipitation Analysis (CCPA), is 

evaluated with quantitative comparison against CPC analysis and RFC observations. It is 

shown that CCPA retains spatial and temporal patterns of Stage IV data set while making 

its long term average closer to that of CPC analysis and the improvement is more 

significant with lower and medium daily precipitation amounts. Cross validation suggests 

that the methodology is robust but subject to limitations due to the validity of the linear 

regression model and the relative scarcity of heavy precipitation events. 

 

 

 



1.  Introduction 

 

Bias correction and downscaling of numerical weather prediction (NWP) products such 

as temperature and wind, of the NCEP Global Ensemble Forecasting System (GEFS) and 

the North America Ensemble Forecasting System (NAEFS), have demonstrated 

significant benefits in improving local forecasts over CONUS domain. The application of 

the same procedures to precipitation is hindered by the lack of a satisfying precipitation 

dataset. The required dataset should be our best estimate for truth on a 5 x 5 km (NDFD) 

grid for each 6-hour period, and it should be accurate and quality controlled. 

 

Atmospheric scientists and hydrologists have been studying the behavior of precipitation 

over a wide range of spatial and temporal scales. However, due to paucity of data and the 

intermittency of precipitation, especially precipitation associated with cumulus 

convection, analysis of observed rainfall distributions is often compromised as a trade-off 

between spatial and temporal resolution: for example, hourly fields at catchment scales 

(Onof and Wheater 1996) versus monthly means at global scales (Chen et al. 1996).  

 

Objective techniques have been developed and applied to construct analyzed fields of 

precipitation over global land areas from surface gauge observations (e.g.  Xie et al.1996; 

Chen et al. 2002). Space-borne measurements of precipitation, with continuous 

developments and refinements of retrieval algorithms, has yielded operational 

precipitation products based on satellite observations of infrared (Arkin and Meisner 

1987; Susskind et al. 1997; Xie and Arkin 1998), passive microwave (Wilheit et al. 1991; 

Spencer 1993; Ferraro 1997), and space-borne precipitation radar (Kummerow et al. 



2000). Although combining information from multiple satellite sensors as well as gauge 

observations and numerical model outputs yield analyses of global precipitation with 

stable and improved quality (e.g. Huffman et al. 1997; Xie and Arkin 1997; Huffman et 

al. 1997; Xie et al. 2003), the merged precipitation products have one deficiency, i.e. their 

quantitative uncertainty over land (e.g., Nijssen et al. 2001; Fekete et al. 2004). 

 

Among the individual inputs used to define the combined precipitation analyses, both the 

satellite estimates and the model predictions are indirect in nature and need to be 

calibrated or examined using the gauge observations ( e.g. Ebert and manton 1998; 

McCollum et al. 2002). Therefore, Gauge observations play a critical role in constructing 

precipitation analyses over land and gauge-based monthly precipitation analysis has been 

constructed over the global land domain (e.g. Xie et al. 1996; Dai et al. 1997; New et al. 

2000; Chen et al. 2002). Similar analyses on sub monthly time scales are relatively new 

due to limited accessibility of corresponding station observations from many countries. 

Nevertheless, NCEP Climate Prediction Center (CPC) Unified Global Daily Gauge 

Analysis (Xie et al. 2010) has generated products over global land areas. This analysis is 

defined by interpolating quality controlled gauge reports at ~30K stations over the global 

land areas using the algorithm of Xie et al. (2007) and the number of reporting stations 

over CONUS is about ~12K. For the purpose mentioned earlier, this CPC data set bears 

more confidence but it provides only 24 hour accumulation at one eighth degree spatial 

resolution. 

 



During the last decade or so, the advent of high spatial and temporal resolution 

precipitation analysis over the Contiguous (or conterminous) United States (CONUS) 

made tremendous progress by combining gauge and radar observations. Currently, each 

of the 12 River Forecast Centers (RFC) of NOAA National Weather Service (NWS) 

routinely produces a multi-sensor precipitation analysis over its own domain and these 

analyses from individual RFCs are mosaicked at NCEP into a national product, called the 

NCEP Stage IV. Stage IV precipitation analysis provides an unprecedented database at 

scales that are sufficiently fine.  

 

The Stage IV precipitation data set is used in the construction of precipitation statistics at 

scales that are sufficiently fine to be of hydrologic relevance (Kursinski and Mullen, 

2008). It is also used as input to hydrological models (Chen et al. 2007) and used as truth 

for model verification (Zhao and Jin, 2008). As it has a spatial resolution nearly equal to 

NDFD grid and temporal resolution of 6 hours, it is an excellent candidate to be used as 

the truth for bias correction and downscaling of precipitation forecast product.  However, 

the product is subject to different methods of quality control and adjustments by different 

River Forecasting Centers. Although the implementation of Doppler radar at the national 

level has greatly improved precipitation estimates, serious limitations still exist. Despite 

its fine spatiotemporal resolution, caution must be employed when analyzing Stage IV 

data because of the uncertainty of radar retrievals in regions of complex terrain or melting 

hydrometeors. Specifically, limited radar coverage at low levels above ground level, 

especially in the interior of the West, wide spread beam blockage over the Intermountain 

West and the shallow nature of stratiform oragraphic precipitation, among other factors, 



all post uncertainties to the analysis (Maddox, 2002). For this reason, some users restrict 

their analysis to the region east of 105W and places highest confidence east of 100W 

(Kursinski and Mullen, 2007). 

 

To provide a better proxy of the truth for the precipitation field over CONUS, it is 

apparently required to take the advantages of the higher climatological reliability of the 

CPC dataset and the higher temporal and spatial resolution of the Stage IV dataset. We 

describe the development of such a new dataset by combining the two available datasets 

for this purpose. This paper is organized as follows: Section 2 provides descriptions of 

the Stage IV and CPC datasets used in the study; Section 3 describes the methodology, 

including the statistical algorithm and the related application procedures while the 

implementation of the new product and generation of the historical data set are given in 

section 4. Qualitative and quantitative evaluations of the methodology and the new data 

set are presented in section 5 and concluding remarks and further discussions are offered 

in section 6. 

 

 

2. Input Data Sets 

 

CPC continuously collects gauge observations, perform basic quality control and conduct 

an early run of its Unified Global Daily Gauge Analysis procedure to generate a temporal 

version of the daily analysis on a regular basis. After the missing data are collected and 

extensive quality control is performed, a final version of the 24-hour accumulated 

precipitation can be generated. For this study, CPC provided the final analysis over 

CONUS land domain, as 24-hour accumulations each day (12Z-12Z) at 0.125 latitude x 



0.125 longitude mesh, for the period from Jan. 1 2000 to Dec. 31 2006. As the final 

analysis for 2007 and later years was not available, the temporal version is used for the 

period of Jan. 1, 2007 through Nov. 6,
 
2009. By mixing the two different versions, the 

sample size is increased with assumption that the statistical difference between the 

temporal and the final version of the CPC analysis can be neglected. For simplicity, this 

dataset is referred as CPC.  

 

The National Centers for Environmental Prediction (NCEP) generates Stage IV 

precipitation analyses (Lin and Mitchell 2005), providing area-averaged, hourly and 6-

hourly estimates of precipitation on a 4-km pixel over the CONUS. The analysis is based 

on multi-sensor observations. The radar and rain gauge measurements are merged at the 

12 River Forecast Centers (RFC) that produce regional analyses over their corresponding 

domains (see Fig.1) and these regional products are then mosaicked into a national 

product at NCEP. The procedure has been operationally running and the products being 

archived since Jan. 1, 2002. The data used in this study consist of 6-hourly (12-18Z, 18-

00Z, 00-06Z, 06-12Z) accumulations on the 4 km hrap grid and span more than eight 

years from 2002 to 2010 with only a few files corrupt or missing. Unlike the CPC data 

which is defined only over CONUS land area, Stage IV analysis extends out of CONUS 

coast and the political boundaries to cover some offshore areas and some bordering 

regions of Canada and Mexico (Fig. 2). In this paper, ST4 is used sometime to refer to the 

Stage IV data.  

 

 

3. Methodology and Algorithms 

 



The methodology employed is basically statistical adjustment of the Stage IV data 

towards CPC so that their long term means are closer. The 6-hourly accumulations in the 

Stage IV dataset are first aggregated to the resolution of the CPC, i.e., daily accumulation 

over 0.125 latitude x 0.125 longitude grid boxes.  As the next step, a statistical 

relationship is established between the two datasets at CPC resolution and used to adjust 

the aggregated Stage IV data to make its climatology (limited to the mean in this paper) 

look like the CPC dataset. Finally, the adjusted Stage IV data is downscaled back to its 

original resolution to recover the highly desired variability in time and space.  

 

a. Aggregation of 6 hourly Stage IV to daily accumulation at CPC grid 

 

In order to adjust the stage IV data toward the climatology of CPC, one needs to establish 

a statistical relationship between the two analyses. As CPC has lower resolution in both 

space and time, the first step of the procedure is to aggregate the stage IV data to the 

resolution of the CPC data set. The four 6-hour accumulations from 12 UTC of a specific 

day to 12 UTC next day is first aggregated into a single 24-hour accumulation for the day 

in consideration. Mathematically, this is written as 

                          ∑
=

=

4

1

6,24, 44
n

n

hHhH STST                                            (1) 

where the subscript H indicates the higher spatial resolution associated with the original 

hrap grid of the stage IV data, which it self is abbreviated as ST4. The next step is 

interpolating ST4H,24h to the CPC 0.125 latitude x 0.125 longitude grid (indicated by 

subscript L), symbolically written as  

                              ST4H,24h � ST4L,24h                                                                            (2) 

 



with the arrow representing an interpolation/extrapolation scheme carefully designed to 

conserve the water volume in the area covered by each grid box of the coarse grid.  

 

When equation (2) is reversed, i.e., the aggregated raw stage IV data is converted from 

the lower resolution back to the higher resolution grid, the resulted ST4L-H,24h is different 

from ST4H,24h  due to the information loss in the extrapolation. Here the subscript L-H 

represents an interpolation from the lower resolution grid to the higher resolution grid. 

Nevertheless, the ratio between the two fields at each grid points can be used to recover 

the lost information of the fine scale patterns.  

 

b. Linear regression for each day of the year and each CPC grid box 

 

 

As discussed in section 2, both CPC and Stage IV data sets are available for the period of 

Jan. 1 2002 to Nov. 6 2009. The purpose of the statistical adjustment of stage IV data is 

to make its climatology close to that of the CPC data. The existence of complicated 

geographic patterns and orographic features in space and domination of annual cycle or 

seasonal variation in the precipitation observation and analysis (Chen et al. 2002; Xie et 

al. 2007) suggests that climatology is better to be defined at each grid box for each day of 

the year.  

 

With just 7 years of data coverage the two data sets may not be sufficient to define the 

climatology of each data set. In order to increase the sample size, a 61-day window is 

used by including the 30 days before and after the day in consideration with a maximum 

sample size of 427. This choice of the width of the window is the result of compromise 



between a reasonable actual sample size (rain days) at most grid points for most days and 

relatively uniform samples. As only the rain days indicated by Stage IV are counted, the 

actual sample size is dependent on the geographic location of the grid box and the season. 

Fig. 3 shows the actual sample size for Jan. 1 and July 1, as two examples. With this 61 

day window, the actual sample size in Eastern US is over 200 for most cases, while 

empty sample is encountered over the Southwestern desert during the summer months 

(May to September). The time series of actual sample size N for a grid point in the desert 

is shown in Fig. 4.  

 

Various statistical schemes are used to adjust precipitation estimate and forecasts. 

Probability mapping is widely used in calibration of forecast against observation, as the 

two may have very different distributions. In this study, a simple linear regression is 

employed after some initial tests. The initial adjustments at each RFC have removed 

extreme values of precipitation and the continuous distribution function in stage IV is 

well behaved. We admit that this is not the best algorithm but it provides a straight 

forward solution to the problem. For each CPC grid box and each day of the year, the 

stage IV precipitation is regressed to the value of CPC, i.e. 

                                      bSTaCPC hL += 24,4*                          (3) 

where a and b are the slope and intercept, respectively, of the linear regression, and  the 

sub-scripts of CPC and ST4 are used to emphasize the spatial and temporal resolution of 

the two precipitation analyses.  

 

c. Gap filling and temporal smoothing of the regression coefficients  

 



Fig. 5a displays the maps of the regression coefficients a and b, and the gaps due to 

empty data sample is clear. As discussed earlier and shown in Figs. 3 and 4, the actual 

sample size is very small adjacent to these gaps in the southwestern US during the 

summer months. This makes the estimated regression coefficients less reliable. Another 

problem with this regression is that the slope is very large at a few special grid points, 

with maximum being over 100 (see Fig. 6). A careful investigation suggests that these 

extreme slopes occur over the Pacific costal areas where stage IV precipitation is 

systematically smaller than CPC by one or two orders of magnitude. This may be caused 

by systematic differences in the algorithms of the two analyses and remain to be further 

investigated. Apparently, this is out of the focus of the current study. Instead, these 

abnormally large coefficients are assumed to be representative and used to adjust the 

extremely small stage IV values towards larger CPC analysis, consistent to the basic 

hypothesis of this study. In addition, both regression coefficients, a and b, show 

significant spatial and temporal variations. As shown in Fig. 5, the spatial variation has 

much larger amplitude and much more fine scale patterns over the West, especially over 

the mountainous areas. This is consistent with the analysis of Kursinski and Mullen 

(2008) on the quality of stage IV data set and suggests that the adjustment by the 

regression is working in the correct direction. 

 

On the other hand, the temporal variations of the two coefficients are characterized by 

significant high frequency noise and kinks (Fig.6). 

 



To deal with the above mentioned problems associated with the regression coefficients, 

two steps are taken to refine the slope a and intercept b separately. First, an interpolation 

algorithm is applied independently to a and b to fill the gaps and replace the unreliable 

values. For any grid box where the coefficients is missing (sample size N<2) or 

unreliable (sample size less than a threshold, N<Nmin), the gap is filled by weighted 

average of the same coefficient for the grid boxes in its vicinity. This algorithm is widely 

used in the analysis of irregularly spaced data (Shepard 1968) such as precipitation (Xie 

et al. 2007).  The second step is to smooth the 366 day time series of each coefficient 

through Fourier truncation. The raw time series is replaced by the accumulation of the 

first 3 harmonic components. Xie et al. (2007) used this method to remove the high 

frequency noises in the daily climatology of precipitation in their gauge based 

precipitation analysis over East Asia. Experiments with the number of the harmonic 

components suggest that 3 is a reasonable choice for regression coefficients, in contrast to 

6 used by Xie et al. (2007) for precipitation of daily climatology. As shown in Figs. 6 and 

7, the smoothed time series of a and b well represent the annual cycle and long term 

trend.  

 

The choice of Nmin may affect this refinement of the coefficients. However, carefully 

checking some examples of time series suggests that interpolated values during the 

summer season usually do not match well with the raw values over the days before and 

after the filled gaps. As a result, these unrepresentative values are more subtly changed in 

the temporal smoothing step and the end results are not sensitive to the choice of Nmin. 

Experiments with Nmin=2 and Nmin=10 showed little difference and thus Nmin=2 is used. 



 

d. Application of the regression to the aggregated stage IV data 

 

The refined regression coefficients a and b are applied to adjust the aggregated Stage IV 

date ST4L,24h, i.e.,                

                                        '4''4 24,24, bSTaST hLhL +•=                                      (4) 

In Equation (4), the regression coefficients a and b are primed to indicates their 

difference from those calculated in (3). From Figs 5b, the slope a’ is between 0.5 and 1.5 

and intercept b’ is in the range of -2 to 6 mm for most of the 0.125 degree grid boxes, 

especially over the East part of the CONUS domain. Over the west, the coefficient a can 

be significantly deviated from unit over areas reflecting the orographic effects, but it is 

between 1/7 and 7 for all points except a few. As discussed earlier, even a value as large 

as 100 is consistent with the records input into the regression analysis. As a result, no 

extreme precipitation is produced due to the abnormally large value of coefficient a. To 

avoid possible occurrence of this unexpected situation in the real time application, an 

upper limit of 500mm is set for ST4
’
L,24h. On the other hand, relatively more frequent 

cases of negative b does result in negative precipitation in the adjusted ST4, i.e., 

ST4
’
L,24h. Whenever this happens, ST4

’
L,24h is set to be zero. 

 

e. Downscaling the adjusted precipitation in space and time 

 

The final stage of the process is to downscale the adjusted Stage IV analysis ST4
’
L,24h in 

both space and time. As discussed in section 1, the goal of adjusting the Stage IV data is 

to retain the higher spatial and temporal resolution while making its climatology towards 

that of the CPC. As discussed in section 3b, a simple interpolation of ST4
’
L,24h, even 

using the water volume conservation scheme, i.e, 



                                          ST4’L,24h � ST4’L-H,24h                                                                       (5) 

can not achieve this goal due to the irreversibility of (2). Neverthless, ST4’L-H,24h can be 

used as the basis for the spatial down scaling. Comparing the two fields in (2) by looking 

at the ratio can isolate the fine scale structures, which in turn can be posed to ST4’L-H,24h, 

i.e., 
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is the result of spatial resolution recovery of the statistically adjusted stage IV analysis.  

 

The temporal downscaling is conceptually straightforward: ST4’
* 

is disaggregated into 

the four successive, non-overlapping 6-hour periods with the same proportion as that in 

the raw stage IV data set. Mathematically, this is the inversion of equation (1) except 

applied to ST4’
*
 instead of ST4, i.e., 
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In (6) and (7), the grid value for the left hand side is automatically set to zero when the 

denominator is zero. 

 

4. Operational Implementation and Dataset Statues 

 

A software package has been developed to implement the algorithm described in section 

3. The first component of the package determines the regression coefficients a and b, 

following steps a, b and c described in section 3 and using the historical data sets of CPC 

and Stage IV for the period from June 1 2002 to July 31 2009. The choice of training 

period provides an identical potential sample size of 427 (=61x7) for all 366 days of the 



year, with a 61-day window and exactly 7 years of data.  In the second component of the 

package, the gap-filled and temporally smoothed version of regression coefficients, a’ 

and b’, are retrieved from an archive and applied to adjust real time and historical  Stage 

IV 6-hour accumulated precipitation analysis and processing, following steps a, d and e 

of the algorithm.  

 

The later component of the software package, named Climatology-Calibrated 

Precipitation Analysis (CCPA) and with products of the same name, was implemented in 

NCEP’s production suite on July 13, 2010. Since then, CCPA has been running on a real 

time basis to process the Stage IV 6 hour precipitation data. Following the data flow and 

schedule of Stage IV products, the first version of the CCPA data set for the 24-hour 

period ending 12 UTC is available shortly after 15 UTC and it will be updated 8 hours, 

32 hours and 41 hours later.  For most days, the final version is available with the first 

update shortly after 15 UTC the same day.  

 

In order to take advantage of this new CCPA product, its historical archive was generated 

at EMC/NCEP for the period of Jan. 1, 2002 to July 13, 2010. This historical archive, 

combined with the real time output, is available to the meteorological/hydrological 

community and general public. As a calibrated version of the Stage IV 6 hour 

precipitation analysis, CCPA can be used in evaluation and calibration of precipitation 

forecast. Using the water volume conservation scheme, CCPA is converted to the 5 km 

National Digital Forecast Database (NDFD) grid, and latitude-longitude grids at 0.125, 

05 and 1.0 degree resolution, all covering the CONUS domain.   



 

 

5. Evaluation  

 

To evaluate the methodology and data set described in this paper, CCPA and ST4 can be 

directly compared at the natural resolution of Stage IV, with 6 hour accumulations. Fig. 8 

displays an example for 18 UTC , 30
th

 to 00 UTC  31
st
, Dec. 2009. While the large scale 

precipitation patterns in ST4 (Fig,8b) and CCPA (Fig.8a) are identical, differences in the 

shape and size of the 10mm contour are visible in the Lower Mississippi States and Utah. 

In fact, the spatial pattern correlation coefficient between the two fields are always well 

above 0.99 (not shown). 

 

As described in section 2, the major component of the CCPA methodology is the 

application of linear regression between ST4 and CPC at 0.125 degree resolution and 24 

hour accumulation. Therefore, evaluation of the CCPA methodology and dataset is 

focused on this aspect. For this purpose, CCPA and the original Stage IV data (ST4) are 

aggregated to 0.125 degree resolution and 24 hour accumulation periods, and compared 

with CPC. As a qualitative example, Fig. 9 shows the time series of the 3 analyses for the 

grid point located at 42N, 102W, over the warm and wet seasons of July-August 2008 

and May-Jun, 2009. Overestimation in ST4 compared with CPC for most precipitation 

events and phase difference between the two are clearly shown. As expected, CCPA 

generally follows the variation of ST4 and, in most cases, bring it towards CPC. 

 

Quantitative evaluation of CCPA methodology and dataset requires the calculation of 

some statistic scores over some extended periods. For this purpose, annual average is 



used in this paper. As the data sample for regression analysis is relatively small, there is a 

need to test the robustness of the methodology. Following an approach similar to Xie et al 

(2007), cross validation is performed with a data holding technique. Regression slope and 

intercept are re-estimated with the same sample pool as described in sections 3b and 4, 

except that the data for a particular one year period (July 1 to June 30 next year) are 

excluded, and the analysis for the same period is reproduced with these new regression 

coefficients. The same procedure is repeated for each of the seven exclusive and non-

overlapping periods and the dataset reproduced is referred to as the Cross Validation 

Analysis (CVA).  

 

Fig. 10a displays the 24 hour precipitation from CPC data set, averaged over the 1 year 

period of 1 July 2008 through 30 June 2009. Since the emphasis here is to evaluate how 

much CCPA is closer to CPC in contrast to Stage IV, the differences of Stage IV, CVA 

and CCPA with respect to CPC are shown in Fig. 10b, c and d, respectively. Without 

calibration, Stage IV has larger differences either with negative or positive values, 

ranging from -5.3 to 5.6 mm (Fig. 10b). Although the spatial patterns are patchy, the 

“bias” is apparently larger over the Missouri Basin River Forecast Center (MBRFC) area 

(fig. 1 and 10b) than other areas, with clear domination of overestimation and a 

maximum of over 5 mm. In fact, the time series in Fig. 9 are from this area. As discussed 

in the introduction, different RFCs using different quality control and algorithms and this 

leads to different statistical properties of the ST4 analysis.  

 



Since CCPA and CVA are statistical adjustment to Stage IV in magnitude, their “biases” 

preserve the fine scale features of high spatial variability in Stage IV and have much 

smaller amplitudes, with the absolute value being less than 1 mm for almost all 

gridpoints. Particularly, the wide-spread large positive bias over MBRFC is significantly 

reduced. In addition, the improvements in CVA and CCPA are very similar to each other, 

suggesting that the methodology is reasonably robust and the sample size is (though 

marginally) sufficient for the regression analysis 

 

Finally, to further examine the impact of the statistical adjustment and the quality of 

CCPA data set, CCPA, ST4 and CVA are verified against surface observations obtained 

from RFC rain gauge network (Zhu, 2007). These daily rain gauge reports are box-

averaged to 0.125 degree and thereafter defined as RFC rain gauge analysis. Root Mean 

Square Error (RMSE) and Absolute Mean Error (ABSE) of 24-hour precipitation are 

calculated against RFC rain gauge analysis as a function of threshold. For each threshold 

value, all of the grid points where the RFC rain gauge analysis is less than the value are 

not included in the calculation. These statistical scores are calculated at 0.125 degree over 

the CONUS domain and averaged over each of the seven exclusive and non-overlapping 

one-year periods. The results for the last period are shown in Fig. 11. For all grid points 

with observed precipitation (threshold 0.0 or 0.2 mm) there are clear improvements in 

terms of RMSE in both CCPA and CVA over the raw Stage IV data, with a reduction of 

0.27mm for CCPA and 0.11mm for CVA. The improvements are evident mostly for 

lower thresholds up to 15 mm/day. For large precipitation amount (35 and 50 mm), the 

improvement by CCPA is less impressive. For thresholds greater than 20 mm, CVA is 



not as good as ST4. The Statistics in terms of ABSE, though less gap among the 3 lines, 

still leads to identical conclusions.  The deterioration of CVA at higher thresholds 

suggests that the 61-day window in the sample pool of the regression analysis is 

necessary with the relatively short ST4 archive and caution must be practiced in the 

application of CCPA with heavy precipitation events. 

 

 

6. Summary and Further Discussions 

 

A simple linear regression method is employed to statistically calibrate the multi-sensor 

Stage IV precipitation analysis over the CONUS domain and make its climatology closer 

to that of the rain gauge based analysis of CPC Unified Global Daily Gauge Analysis. 

Available archived historical date sets of the two analyses with a 7 year length are used to 

estimate the regression coefficients for each Julian day of the year and each grid point in 

the CPC grid mesh over CONUS. These coefficients are then applied to the spatially and 

temporally aggregated STAGE-IV data to generate an adjusted value, which  is then 

down scaled in space and time to the original grid and accumulation period of Stage IV. 

Carefully designed interpolation/extrapolation algorithms are used to aggregate the raw 

STAGE-IV data and downscale the statistically adjusted value.  The procedure, referred 

as Climatology-Calibrated Precipitation Analysis (CCPA) was implemented to the NCEP 

production suite on July 13, 2010, to routinely process incoming Stage IV 6 hour 

precipitation analysis to generate corresponding CCPA files. It is also used to process the 

historical Stage IV data set covering the period of Jan. 1, 2002 to July 13, 2010, to form a 

complete archive of CCPA.  

 



The reason for the non-uniform behavior of the CCPA data set can be revealed by scatter 

plots of Stage IV analysis against CPC for each grid point and each Julian day. In a 

typical case, the slope of the empirical “regression” line is different for the lower and 

higher precipitation ranges. As heavy precipitation event is scarce, a “linear” regression is 

always dominated by the lower precipitation points. In other words, the merit of the 

methodology is limited by the weakness of the simple linear regression model and 

inadequate sample of high amount of precipitation. Cross validation suggests that the 

current estimation of regression coefficients is fairly robust with the current 7 years 

archived data over all precipitation events, but may be inadequate for heavy rainfall 

amounts. Therefore, the quality of CCPA should be improved in the future by increasing 

the length of the archived CPC and Stage IV data sets and using a more realistic 

regression model. There is a plan at EMC/NCEP to perform annual updating of the 

regression coefficients with increased sample size, and employ non-linear regression 

models or other calibration methods in the future. 
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Figure Captions 

 

Fig.1 The domains of the thirteen River Forecast Centers (RFC). Note that stage IV 

analysis covers the twelve RFCs over the Contiguous United States (CONUS).  Image 

from http://www.srh.noaa.gov/lub/wx/nws_HSAs.htm. 

 

 

Fig.2 The 24 hour precipitation from 0.125 degree CPC analysis for may 20
th

, 2006 

(upper panel) and stage IV analysis aggregated to the same grid and accumulation time 

period. 

 

Fig.3 (a) The actual sample size (upper panel) and residual error of regression for Jan. 1
st
. 

 

Fig. 3 (b) Same as fig.3 (a) except for July 1
st
. 

 

Fig.4 time series of sample size and residual error of the analysis for a grid point in the 

Southwest, with empty samples during the summer months. 

 

Fig. 5 (a) Regression coefficients a and b, for Aug. 1, Calculated from Equation (3). 

 

Fig. 5 (b) Regression coefficients a and b for Aug. 1 after gap filling. 

 

Fig.6. Time series of regression coefficient a for four selected grid points. Gap filed value 

(black) and the smoothed version (green). 

 

Fig.7. Time series of regression coefficient b for four grid points. Gap filled value (black) 

and the smoothed version (green). 

 

Fig. 8. The 6 hour precipitation from (a) CCPA at 4km HRAP grid accumulated for the 

period of 18Z , 30
th

 to 00Z  31
st
, December 2009 and (b) Stage IV analysis at the same 

grid and accumulation time period. 

 

Fig. 9 Time series of 24 hour precipitation at point (42N, 102W) from 0.125 degree CPC 

UPA(short dash line), Stage IV (dot and dash line) and CCPA (solid line) for two 

periods: (a) 1 July – 31 August 2008; (b) 1 May – 30 June 2009.  

 

Fig. 10. (a) The 24 hour precipitation from 0.125 degree CPC  averaged between 1 July 

2008 and 30 June 2009 and The differences of (b) Stage IV, (c) CVA and (d) CCPA with 

respect to CPC.  Stage IV, CVA, and CCPA are aggregated to the same grid and 

accumulation time period. 

 

Fig. 11. Root Mean Square Error (RMSE, solid line) and Absolute Mean Error (ABSE, 

dotted line) of 24-hour precipitation from Stage IV (black), CVA (red) and CCPA (green) 

verified against RFC rain gauge analysis as a function of precipitation threshold.  

 

 



  

 

Fig.1 The domains of the thirteen River Forecast Centers (RFC). Note that stage IV 

analysis covers the twelve RFCs over the Contiguous United States (CONUS).  Image 

from http://www.srh.noaa.gov/lub/wx/nws_HSAs.htm. 



 
 

Fig.2 The 24 hour precipitation from 0.125 degree CPC analysis for may 20
th

, 2006 

(upper panel) and stage IV analysis aggregated to the same grid and accumulation time 

period. 

 



 
 

Fig. 3. (a) The actual sample size (upper panel) and residual error of regression for Jan. 

1
st
.



 
 

Fig. 3(b) Same as fig.3 (a) except for July 1
st
. 

 



 
 

Fig.4 time series of sample size and residual error of the analysis for a grid point in the 

Southwest, with empty samples during the summer months. 



 

 

 

 
 

Fig. 5 (a) Regression coefficients a and b, for Aug. 1, Calculated from Equation (3).



 
 

 

Fig. 5 (b) Regression coefficients a and b for Aug. 1 after gap filling. 

 

 



 
 

Fig.6. Time series of regression coefficient a for four selected grid points. Gap filed value 

(black) and the smoothed version (green). 



 
 

Fig.7. Time series of regression coefficient b for four grid points. Gap filled value (black) 

and the smoothed version (green). 

 

 

 



 
 

Fig. 8. The 6 hour precipitation from (a) CCPA at 4km HRAP grid accumulated for the 

period of 18Z , 30
th

 to 00Z  31
st
, December 2009 and (b) Stage IV analysis at the same 

grid and accumulation time period. 

 



 

 
Fig. 9 Time series of 24 hour precipitation at point (42N, 102W) from 0.125 degree CPC 

UPA(short dash line), Stage IV (dot and dash line) and CCPA (solid line) for two 

periods: (a) 1 July – 31 August 2008; (b) 1 May – 30 June 2009.  

 



 

 

 
 

 

Fig. 10. (a) The 24 hour precipitation from 0.125 degree CPC  averaged between 1 July 

2008 and 30 June 2009 and The differences of (b) Stage IV, (c) CVA and (d) CCPA with 

respect to CPC.  Stage IV, CVA, and CCPA are aggregated to the same grid and 

accumulation time period. 

 

 

 

 

 

 

 

 

  CPC STAGE4-CPC 

CVA-CPC CCPA-CPC 

(a) (b) 

(c) (d) 

  CPC   CPC 



 
 

 

Fig. 11. Root Mean Square Error (RMSE, solid line) and Absolute Mean Error (ABSE, 

dotted line) of 24-hour precipitation from Stage IV (black), CVA (red) and CCPA (green) 

verified against RFC rain gauge analysis as a function of precipitation threshold.  

 

 

 

 


